Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming Yin, ${ }^{\text {a }}$ Frank R. Fronczek, ${ }^{\text {b }}$ Judith A. Schuerman, ${ }^{\mathbf{b}} \ddagger$ Joel Selbin ${ }^{\text {b }} \S$ and Steven F. Watkins ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemical Engineering, Louisiana State University, Baton Rouge,LA 70803, USA, and ${ }^{\text {b }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
\# Current address: Louisiana Department of Environmental Quality, PO Box 4302, Baton Rouge, LA 70821, USA
§ Current address: 3345 16th Street, Boulder, CO 80304, USA

Correspondence e-mail: swatkins@lsu.edu

Key indicators

Single-crystal X-ray study
$T=105 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.027$
$w R$ factor $=0.054$
Data-to-parameter ratio $=35.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2,4,6-Trimethyldithiobenzoato)(triphenylphosphine)gold(I)

The title compound, $\left[\mathrm{Au}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, features an Au^{I} atom linearly coordinated to a P atom and one S atom of the dithiobenzoate. The $\mathrm{S}-\mathrm{Au}-\mathrm{P}$ bond angle is $177.43(2)^{\circ}$. In contrast to other reported dithiobenzoate-gold complexes, in which the second S atom is syn with respect to Au , the title compound shows an uncoordinated S atom in an anti conformation.

Comment

We recently reported (Macalindong et al., 2006) the structure of a linear gold(I) complex with a triphenylphosphine ligand and 2-methyldithiobenzoate acting as a monodentate ligand. That complex is chemically similar to the title compound, (I), differing only in the ring substitution. The main structural difference lies in the $\mathrm{Au}-\mathrm{S}-\mathrm{C}-\mathrm{S}$ torsion angles: $-174.0(1)^{\circ}$ in (I) (anti with respect to the Au atom) versus -3.1 (2) and $+0.2(2)^{\circ}$ in the two independent molecules [(II) and (III)] previously reported. It is also worth noting that few of the chemically equivalent structural parameters associated with the Au coordination environment in these three molecules show consistent statistical equivalence. Some examples, with values are listed in the order (I), (II), (III): $\mathrm{P}-\mathrm{Au}[2.2623$ (6), 2.2568 (6) and 2.2632 (6) Å], $\mathrm{Au}-\mathrm{S}[2.3155$ (6), 2.3240 (6) and 2.3320 (6) \AA] and $\mathrm{P}-\mathrm{Au}-\mathrm{S} \quad[177.43$ (2), 175.03 (2) and $\left.173.83(2)^{\circ}\right]$. This suggests that these gold(I) complexes are not very rigid and are easily deformed by crystal packing forces.

Experimental

To a stirred solution of $0.5 \mathrm{~g}\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4} \mathrm{~N}\right]\left[2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CS}_{2}\right]$ in DMF (20 ml) was added $\mathrm{NaAuCl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.26 \mathrm{~g})$ dissolved in DMF $(10 \mathrm{ml})$. The pale-orange solution was stirred for 24 h and the resulting red-brown precipitate was filtered, washed with DMF and air dried. This solid $(0.02 \mathrm{~g})$ was dissolved in $\mathrm{CS}_{2}-\mathrm{CHCl}_{3}(16 \mathrm{ml}, 1: 1$ $v / v)$ and added to $\mathrm{PPh}_{3}(0.014 \mathrm{~g})$ dissolved in $\mathrm{CS}_{2}-\mathrm{CHCl}_{3}(2 \mathrm{ml}, 1: 1$ $v / v)$. This pink solution was evaporated and the resulting orange residue was washed with a 3:2 absolute ethanol/cyclohexane solution,
suction filtered and air dried. The orange solid was recrystallized from diethyl ether (Schuerman, 1988).

Crystal data

$\left[\mathrm{Au}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$	$Z=4$
$M_{r}=654.54$	$D_{x}=1.721 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} /{ }^{\circ} n$	Mo $K \alpha$ radiation
$a=8.9954(10) \AA$	$\mu=6.07 \mathrm{~mm}^{-1}$
$b=20.745(2) \AA$	$T=105 \mathrm{~K}$
$c=13.553(2) \AA$	Fragment, orange
$\beta=93.002(5)^{\circ}$	$0.20 \times 0.15 \times 0.12 \mathrm{~mm}$
$V=2525.6(5) \AA^{3}$	

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems
Cryostream cooler
ω scans with κ offsets
Absorption correction: multi-scan (SCALEPACK; Otwinowski \&
Minor, 1997)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.054$
$S=0.95$
10430 reflections
293 parameters
H -atom parameters constrained

Figure 1
View of (I) (50% probability displacement ellipsoids). H atoms are not shown.
reduction: $D E N Z O$ and $S C A L E P A C K$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Macalindong, J. S., Fronczek, F. R., Schuerman, J. A., Selbin, J. \& Watkins, S. F. (2006). Acta Cryst. E62, m889-m890.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Schuerman, J. A. (1988). Univ. Microfilms Int. Order No. DA8904565. (1988), 345 pp. From: Diss. Abstr. Int. B (1989). 49, Part 1, 5300-5301.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

